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INTRODUCTION

This articlegives a briefsummary ofsome resultsobtained by Nasser (ref.i)on modeling

and simulation ofinequalityproblems in multibody dynamics. In particular,the augmented

Lagrangian method discussedhere isapplied toa constrainedmotion problem with

impulsive inequalityconstraints.A fundamental characteristicofthe multibody dynamics

problem isthe lack ofglobalconvexity ofitsLagrangian. The problem istransformed intoa

convex analysisproblem by localization(piecewiselinearization),where the augmented

Lagrangian has been successfullyused [seeGlowinski and Le Tallec(ref.2);Glowinski,

Lions,and Tremoli_res (ref.3);and Fortin and Glowinski (ref.4)].A model testproblem is

considered,and a setofnumerical experiments ispresented (Figures I through 9).

MATHEMATICAL MODEL

Functional Context

X- H_(O,T;RN), (1)

dmv L2(0, T;

£ is a Lagrangian function, J is a nonlinear functional, and K is a closed subset of x.

(2)
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Main Problem

Find 0 (K, for which J is stationary ]

K = K I N K2, (3)

Kl={v_X:gj(v(t))=O , j=l,2,...,k a.e. on (O,T)},
(4)

K2={u(X:gj(v(t))_O , j=k-/-I ..... k+l a.e. on (o,r) !.

The functions gi(v(t)) are real valued; finally, J is defined by

J(v) = £(v, 6, t) dt.
o

The stationarity of J at 0 can be formulated as shown in the following section.

(5)

(6)

AUGMENTED LAGRANGIAN FORMULATION

Following a well-known technique [Glowinski and Le Tallec (ref. 2); Glowinski, Lions,

and Tremoli_res (ref. 3); and Fortin and Glowinski (ref. 4)], we associate to (1)-(6) the

following problem:

Find 0 and l, with 0 E K and l _ A, for which the following augmented functional Jr is

stationary:

TJr(V, p) = £r(V, _, p) dt ,
o

(7)

where

r[ + + ]£r(V,p) =£(v,v) + <PrGi(v)> + <p2, G2(v)> + _ <GrGI > + <G 2 ,G 2 > ,
(8)

a(v) = [g /v),gJ_) ..... g_÷/v) ]r,
(9)
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[ ]"G1 : gl'g2" .... gk ' (10)

+ + + T (11)

+ 1
(12)

A= _u: t_ i i=t ' I_i{R if i=I,2 ..... k , 1_i>-0 if i=k+l ..... k+l . (13)

There exists a large amount of literature dealing with the case K 2 = _, which leads to

index 3 differential algebraic equations. The case when K2 is nonempty is considerably

more difficult from a mathematical point of view, and hence fewer technical papers have been

devoted to it. The methodology we shall present includes treatment of both cases.

SOLUTION ALGORITHMS

Given o,(tn) , o,(t ), and tk(tn) , compute Oj,+1(tn), Ok+l(tn), and _t_+t(t ) via the

following:

VOJr(Ok+rOk+t, lk) =0, (14)

_[k+l = Pa[J'k + pG(Ok+l(tn)) ] ;

PA is the projection operator associated with the set a. For the choice of r and p, see

Nasser (ref. 1) and Glowinski, Lions, and Tremoli_res (ref. 3).

(15)

LINEARIZATION AND TIME DISCRETIZATION

Following Nasser (ref. 1), we introduce the perturbation 60, 60, 60" of 0, 0, 0" to obtain the

following system:

M(O) 60" + C(O,O) 6_ + K(O,O) 60 + R(O) _0 + S(O) 60 = r.h.s. (0). (16)
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k+l

s= Y _,vog/o_,
i=I

(17)

i=1

• )}
i--k4"l

(18)

r.h.s. (0) = k+l [ k

ill i ill

i=k÷l

(19)

Taylor Series Expansion of 0 and d

Using Taylor seriesexpansion for 0 and O, we get

,o, At2 _o_ Lit3 Lit4 O( Zlt5 )
O(t + Lit) = O(t) + O(1)(t)At + O"(t) "_- + O'°'(t) -_ + O(4)(t) 2"--4 +

(20)

At2-- + _" Lit3 4- O(At4),
O(t + Lit) = O(z)(t + Lit) = O(z)(t) + O(2)(t)Lit + O(3)(t) 2 O"'(t) -_-

(21)

where dots or superscripts denote the order of the derivatives.

Let

,SO(t) = O(t + At) - O(t), (22)

#d(t) = d(t + Lit) - d(t), (23)

O(2)(t + Lit) - O(2)(t)

Lit
(24)
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80(t) = O(t + at) - O'(t), (25)

60(2) _. O(3)(t)At.
(26)

Time Discretization of the Differential Equation (16)

Linear Acceleration Method

This is a widely used scheme in structural dynamics. It consists of assuming that terms

involving Oc4)(t) in equations (20) and (21) are negligible and that the acceleration between t

and t + at varies linearly [i.e., according to equation (26)]. Substituting equation (26) into

equation (20), we get

6 6 .

60"= -_t2 50(t) - _t O(t) - 30(t) . (27)

Taking equations (26) and (27) into account in equation (21), we obtain

3
= --6O(t) -30(t)- --O(t). (28)

At 2

Substituting equations (27) and (28) into equation (16),we get the following linear system

(in 60):

A6e = b, (29)

where

6 3
A = --'-_M+ -_:C +K +R +S, (30)

Zlt_

6 zlt
b = m O(t)M + 3MO'(t) + 3CO(t) + --O(t)C.

Zlt 2
(31)
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Higher Order Time Discretization Schemes

We assume that terms involving derivatives of order 5 and higher are negligible and that

e(2)(t+ At) --e(2)(t--At)
O(3)(t) = , (32)

2At

O(4)(t) __
O(2)(t 4- At) -- 20(2)(t) 4- O(2)(t -- At)

At 2
(33)

and

_ff(t)= ff(t+ at) - #(v. (34)

Substituting equations (32), (33), and (34) into (20)-(21) and rearranging terms, we get

(analogous to the linear acceleration method):

A*60 = b', (35)

where

, 8 I0 C+K+R +S,
At 2 MA =_ 4"3A t (36)

b* = -Md I - Cd 2, (37)

8 [ At 2.. 13At 2.. l

=-- l  oct - -  (t At-d I
At 2 241

(38)

I3At [ At .. 5At id2 - -_ #(t)- -_O(t-At)4" 7-fd, I. (39)

A second algorithm is as follows: Given O(t,,), O(t,,). O(tJ, O(t,._ t), and A(tJ. update

60(t J. Oh÷1(tJ, and _t_.l(t J via
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80 k = A-:b, (40)

)*k+I = PA,[1 k + pG(O_+I) ] , (41)

where

In fact,

-- p:pE , pi(R , i=I,2 .... ,k , p>-O , i=h+l ..... h+l . (42)

A = L2(O,T;A°). (43)

Algorithm (40)-(41) can be used if A and b are replaced by A" and b*.

Other integration schemes, such as the ones in Dean, Glowinski, Kuo, and Nasser (ref. 5),

may be used, also.

The acceleration O(t) may be updated from the solution ofequat/on (14) after convergence

on (60it), _t)) has been achieved.

Choice of r and p

The parameters r, p, and at are the variables controlling the stability. For optimal

choice of these parameters, refer to Glowinski and Le Tallec (ref. 2) and Glowinski, Lions,

and Tremoli_res (ref. 3).

Using the projection method substantiated and systematically developed in Nasser

(ref. 1), the equations of motion of the unconstrained system can be obtained in the following

form:

M60"+ CSO + K60 = O. (44)

The projection method without piecewise linearization has been used by Keat (ref. 6) and is

equivalent to the well-known Kane's method (ref. 7).
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TEST PROBLEM

Consider a planar two-body system with a rigid obstacle, as shown in Figure 1. The

Cartesian coordinates are related to the Lagrangian coordinates by

x I ----a I sin 01 ,
(44)

x 2 = lsinO t 4- a2sinO 2,
(45)

Yl -_ al cosO 1 ,
(46)

Y2 = l cos 0 t 4- a 2 cos 02,
(47)

(48)

PE = mtgat( I - cosOt) 4- m2g [t( I - cosOt) + a2(1- cos02) ] .

The stationarity of the Lagrangian £ is given by

4- m2glsinO t = O,

(49)

(50)

Data:

rn I

rn 2

l

[1

g

mass ofbody 1

-- mass ofbody 2

- length

- moment inertia of body 1

-- moment inertia of body 2

- acceleration of gravity

(51)
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Constraints:

gl = l1 sin 01 4- d > 0

= + t2si,,o > o

For the case r = 0, the augmented Lagrangian method reduces to the multiplier

method used for the treatment of Coulomb or dry frictionproblems in Dean, Glowinski, Kuo,

and Nasser (ref.8). For the case r_ 0, 1 = 0, the scheme reduces to the well-known penalty

method. The parameter r isthe spring stiffnesscoefficientused in classicalcontact

problems.

CONCLUSION

The augmented Lagrangian method successfully applies to contact/constrained motion

problems ofmultibody dynamics. For constraints involving 0, the technique stillapplies;

however, the details are rather lengthy and were omitted. The case of elasticbodies offersno

mathematical difficultyexcept in the details,and the convergence isinfluenced by the

spatial discretization largest mesh size. For further details,refer to Kikuchi and Oden

(ref.9) and Nasser (ref.1).
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Figure 1. Planar two-body system.
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Figure 2. Multiplier method/high-order scheme - energy.
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Figure 4. Augmented Lagrangian/high-order scheme - energy.
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Figure 5. Augmented Lagrangian/high-order scheme - constraint force.
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Figure 6. Penalty method/high-order scheme - energy.
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Figure 7. Penalty method/high-order scheme - constraint force.
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